4 research outputs found

    A Tale of Two Projects: Basis for Centrosome Amplification after DNA Damage and Practical Assessment of Photodamage in Live-Cell Imaging: A Dissertation

    Get PDF
    This thesis comprises two separate studies that focus on the consequences of cellular damage. The first investigates the effects of DNA damage on centriole behavior and the second characterizes phototoxicity during live-cell imaging. Cancer treatments such as ionizing radiation and/or chemotherapeutic DNA damaging agents are intended to kill tumor cells, but they also damage normal proliferating cells. Although centrosome amplification after DNA damage is a well-established phenomenon for transformed cells, it is not fully understood in untransformed cells. The presence of extra centrosomes in normal cell populations raises the chances of genomic instability, thus posing additional threats to patients undergoing these therapies. I characterized centriole behavior after DNA damage in synchronized untransformed (RPE1) human cells. Treatment with the radiomimetic drug, Doxorubicin, prolongs G2 phase by at least 72hrs, where 52% of cells display disengaged centrioles and 10% contain extra centrioles. This disengagement is mediated by Plk and APC/C activities both singly and in combination. Disengaged centrioles are associated with maturation markers suggesting they are capable of organizing spindle poles. Despite the high incidence of centriole disengagement, only a small percentage of centrioles reduplicate due to p53/p21 dependent inhibition of Cdk2 activity. Although all cells become prolonged in G2 phase, 14% eventually go through mitosis, of which 26% contain disengaged or extra centrioles. In addition to cancer treatments, cellular damage can be acquired from various external conditions. Short wavelengths of light are known to be toxic to living cells, but are commonly used during live-cell microscopy to excite fluorescent proteins. I characterized the phototoxic effects of blue (488nm) and green (546nm) light on cell cycle progression in RPE1. For unlabeled cells, I found that exposure to green light is far less toxic than blue light, but is not benign. However, the presence of fluorescent proteins led to increased sensitivity to both blue and green light. For 488nm irradiations, spreading the total irradiation durations out into a series of 10s pulses or conducting single longer, but lower intensity, exposures made no significant changes in phototoxicity. However, reducing oxidative stress by culturing cells at physiological (~3%) oxygen, or treatment with a water-soluble antioxidant, Trolox, greatly improved the cells tolerance to blue light. Collectively, my work offers an explanation for centrosome amplification after DNA damage and demonstrates the importance of proper centriole regulation in untransformed human cells. Further, it provides a practical assessment of photodamage during live-cell imaging

    Link Between DNA Damage and Centriole Disengagement/Reduplication in Untransformed Human Cells

    No full text
    The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 hours, though 14% of the cells eventually go through mitosis in that time. By 72 hours after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with gamma-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53 dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations. J. Cell. Physiol. (c) 2014 Wiley Periodicals, Inc

    Live Cell Imaging: Assessing the Phototoxicity of 488 and 546 nm Light and Methods to Alleviate it

    No full text
    In live cell imaging of fluorescent proteins, phototoxicity of the excitation light can be problematical. Cell death is obvious, but reduced cell viability can make the interpretation of observations error prone. We characterized the phototoxic consequences of 488 and 546 nm light on untransformed human cells and tested methods that have or could be used to alleviate photodamage. Unlabeled RPE1 cells were given single 0.5-2.5 min irradiations in early G1 from a mercury arc lamp on a fluorescence microscope. Four hundred eighty-eight nanometer light produced a dose-dependent decrease in the percentage of cells that progressed to mitosis, slowing of the cell cycle for some of those entering mitosis, and a approximately 12% incidence of cell death for the highest dose. For 546 nm light we found a 10-15% reduction in the percentage of cells entering mitosis, no strong dose dependency, and a approximately 2% incidence of cell death for the longest irradiations. For cells expressing GFP-centrin1 or mCherry-centrin1, fewer entered mitosis for each dose than unlabeled cells. For constant total dose 488 nm light irradiations of unlabeled cells, reducing the intensity 10-fold or spreading the exposures out as a series of 10 sec pulses at 1 min intervals produced a minor and not consistent improvement in the percentage of cells entering mitosis. Reducing oxidative processes, by culturing at approximately 3% oxygen or adding the reducing agent Trolox noticeably increased the fraction of cells entering mitosis. Thus, for long-term imaging there can be value to using RFP constructs and for GFP-tagged proteins reducing oxidative processes

    The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation

    No full text
    The Brahma (BRM) and Brahma-related Gene 1 (BRG1) ATPases are highly conserved homologs that catalyze the chromatin remodeling functions of the multi-subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in many cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumor\u27s receptor status. Knockdown of either ATPase in a triple negative breast cancer cell line reduced tumor formation in vivo and cell proliferation in vitro. Fewer cells in S phase and an extended cell cycle progression time were observed without any indication of apoptosis, senescence, or alterations in migration or attachment properties. Combined knockdown of BRM and BRG1 showed additive effects in the reduction of cell proliferation and time required for completion of cell cycle, suggesting that these enzymes promote cell cycle progression through independent mechanisms. Knockout of BRG1 or BRM using CRISPR/Cas9 technology resulted in the loss of viability, consistent with a requirement for both enzymes in triple negative breast cancer cells
    corecore